POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Hardware solutions used in the analysis of bioactive compounds [S2Bioinf1>RSAZB]

Course				
Field of study Bioinformatics		Year/Semester 2/4		
Area of study (specialization)		Profile of study general academic		
Level of study second-cycle		Course offered in polish		
Form of study full-time		Requirements elective		
Number of hours				
Lecture 15	Laboratory classe 15	es	Other (e.g. online) 0	
Tutorials 0	Projects/seminars 0	5		
Number of credit points 2,00				
Coordinators	Lecturers			
dr hab. inż. Wojciech Smułek wojciech.smulek@put.poznan.p	I			
dr hab. inż. Joanna Zembrzuska joanna.zembrzuska@put.pozna				
dr hab. inż. Agnieszka Zgoła-Gr agnieszka.zgola-grzeskowiak@				

Prerequisites

Knowledge of the structure of atoms and molecules. The student should be able to self-educate and understand the need to complete his / her education and improve personal and professional competences.

Course objective

The aim of the course is to present the construction and hardware solutions used in combined techniques applied in the determination of bioactive compounds in biological samples.

Course-related learning outcomes

Knowledge:

The student will learn the techniques and methods of identifying biomolecules and biologically active compounds [K_W02].

The student will learn about chemistry issues that are useful in formulating and solving simple bioinformatics tasks, covering the basic concepts and laws of organic chemistry [K_W06]. The student will learn the basic principles of occupational health and safety and ergonomics while working in an analytical laboratory [K_W14].

Skills:

The student is able to use analytical methods for the quantitative and qualitative determination of biochemical compounds and assess their usefulness [K_U03].

The student is able, under the supervision of a research tutor, to use analytical methods to formulate and solve research tasks [K_U06].

The student is able to use the language adequate to undertaken scientific discussions in communication with various environments [K_U09].

The student is able to independently acquire knowledge and improve his qualifications [K_U17]. The student is able to obtain information from literature, databases and other properly selected sources, also in English [K_U01].

Social competences:

The student understands the need for self-education and improving his / her professional competences. [K_K01].

The student understands the need to define priorities for the implementation of a task defined by himself or others [K_K03].

The student understands the need to take responsibility for the decisions made [K_K05].

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows: A test after a cycle of lectures, tests during laboratory courses.

Programme content

Introduction to separation techniques (separation of sample components) and mass spectrometry (identification and determination of analytes).

Chromatographic separation techniques - comparison of liquid and gas chromatography - types of mobile and stationary phases and their influence on the separation of sample components. Multidimentional chromatography - principle of operation and analytical benefits. Mass spectra and their interpretation spectra libraries. Ionization methods - possibilities and effects of their application (EI, CI, ESI, APCI, MALDI, ICP).

Mass analyzers - comparison of the working method, obtained resolution and accuracy, tandem spectrometry.

Calibration of mass spectrometers.

Teaching methods

A lecture - a multimedia presentation containing the above program content.

Laboratory exercises:

- influence of ion source and solvent parameters on the mass spectrum of organic compounds in the LC-MS/MS technique,

- identification and determination of phenolic acids in plant extracts,

- the influence of the column and ion source parameters on the quality of the GC-MS analysis,
- the use of MS spectral libraries in the identification of cellular metabolites.

Bibliography

Basic

1. E. de Hoffmann, J. Charette, V. Stroobant "Spektrometria mas" Wydawnictwo NT , Warszawa1994

2. R. A.W. Johnstone, M. E. Rose "Spektrometria mas" Wydawnictwo PWN, Warszawa 2001

3. R. M. Silverstein, F. X. Webster, D. J. Kiemle "Spektroskopowe metody identyfikacji związków organicznych, Wydawnictwo PWN, Warszawa 2007

4. A. S. Płaziak, K. Golankiewicz "Wprowadzenie do spektrometrii masowej związków organicznych" Wydawnictwo ISAT, Poznań 1992

- 5. P. Suder, A. Bodzoń-Kułakowska, J. Silberring "Spektrometria Mas" Wydawnictwo AGH, Kraków 2001
- 6. W. Danikiewicz "Spektrometria mas. Podstawy i zastosowania" PWN, Warszawa 2020
- 7. Z. Witkiewicz, Podstawy chromatografii, WNT, Warszawa 1995
- Additional

1. J. Namieśnik, Z. Jamórgiewicz, M. Pilarczyk, L. Torres, Przygotowanie próbek środowiskowych do analizy, WNT Warszawa 2000

- 2.W. Szczepaniak, Metody instrumentalne w analizie chemicznej, PWN, Warszawa 2002
- 3. Scientific papers

Breakdown of average student's workload

	Hours	ECTS
Total workload	50	2,00
Classes requiring direct contact with the teacher	30	1,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	20	0,50